
Neuroscience 588 (2025) 152–159 

A
0
C

 

Contents lists available at ScienceDirect

Neuroscience

journal homepage: www.elsevier.com/locate/nsc  

Research article

A deep learning approach to artifact removal in Transcranial Electrical 
Stimulation: From shallow methods to deep neural networks and state space 
models
Miguel Fernandez-de-Retana a ,∗, Pablo Matanzas-de-Luis a , Javier Peña b , Aitor Almeida a
a Faculty of Engineering, University of Deusto, Av. de las Universidades, 24, Bilbao, Spain
b Faculty of Health Sciences, University of Deusto, Av. de las Universidades, 24, Bilbao, Spain

A R T I C L E  I N F O

Keywords:
Bioinformatics
Deep learning (DL)
Electroencephalogram (EEG)
EEG denoising
Noise filtering
State space models (SSM)
Transcranial Electrical Stimulation (tES)

 A B S T R A C T

Transcranial Electrical Stimulation (tES) is a non-invasive neuromodulation technique that generates artifacts 
in simultaneous EEG recordings, hindering brain activity analysis. This study analyzes Machine Learning (ML) 
methods for tES noise artifact removal across three stimulation types: tDCS, tACS, and tRNS. Synthetic datasets 
were created by combining clean EEG data with synthetic tES artifacts. Eleven artifact removal techniques 
were tested and evaluated using the Root Relative Mean Squared Error (RRMSE) in the temporal and spectral 
domains, and the Correlation Coefficient (CC). Results indicate that method performance is highly dependent 
on stimulation type: for tDCS, a convolutional network (Complex CNN) performed best; while a multi-modular 
network (M4) based on State Space Models (SSMs) yielded the best results for tACS and tRNS. This study 
provides guidelines for selecting efficient artifact removal methods for different tES modalities, establishing a 
benchmark for future research in this area and paving the way for more robust analysis of neural dynamics 
in advanced clinical and neuroimaging applications.
Introduction

The introduction and development of non-invasive Transcranial 
Electrical Stimulation (tES) techniques have offered researchers and 
clinicians a valuable tool for modulating the activity of cerebral regions 
in humans (Yavari et al., 2018). This, in turn, has facilitated the 
exploration of brain-behavior relationships and the development of 
treatments for neurological and psychiatric disorders (Camacho-Conde 
et al., 2022) as well as cognitive enhancement in healthy popula-
tion (Simonsmeier et al., 2018). More specifically, tES is a relatively 
recent technique with a wide range of applications and it works by 
injecting small amounts of current into the scalp via rubber electrodes 
that are enclosed in saline soaked sponges (Kohli and Casson, 2019). 
These currents create an electrical field that modulates neuronal activ-
ity based on the duration, intensity, and modality of the application 
and there are three main types of tES: transcranial Direct Current 
Stimulation (tDCS), transcranial Alternating Current Stimulation (tACS) 
and Random noise Stimulation (tRNS). In tDCS, a small direct current 
is applied between anodal (positive) and cathodal (negative) electrodes 
placed on the surface of the head to target specific brain areas lo-
cated beneath the electrodes (Nitsche and Paulus, 2000). In tACS, an 
alternating current (AC) with a predetermined frequency is passed 
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between anodal and cathodal electrodes, typically set within the EEG 
frequency spectrum (1–100 Hz) (Antal et al., 2008). Finally, in tRNS, 
the brain areas beneath both electrodes are stimulated with a current 
whose amplitude varies randomly in time within the frequency range 
of 100–640 Hz (Terney et al., 2008).

Nevertheless, our understanding of the effects induced by tES on 
neural activity remains limited, particularly concerning its impact 
on neural networks (Miniussi et al., 2012). Employing an approach 
like combining electroencephalography (EEG) with tES could provide 
deeper insights into the neural mechanisms underlying these observed 
changes. Electroencephalography (EEG) is a non-invasive neuroimag-
ing method that records postsynaptic potentials resulting from the 
electrical activity of cortical neurons by placing electrodes on the 
scalp (Cohen, 2017). However, simultaneous EEG recording during 
stimulation via tES is currently not feasible due to the presence of 
stimulation artifacts in the EEG recordings. These artifacts occur during 
tES, are several orders of magnitude larger than the signals of inter-
est (Kasten et al., 2018) and prevent the direct analysis of EEG data 
collected concurrently. Therefore, research combining tES and EEG has 
been mainly restricted to behavioral and after effect studies (Thut et al., 
2017).
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Fig. 1. Overview of Sources of Noisy Artifacts in EEG Signals. Categoriza-
tion of the different sources of noisy artifacts in EEG (in red, the sources of 
noise studied in this work).  (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

While the work done addressing the filtering of EOG and EMG 
artifacts is extensive, in the case of the transcranial Electrical Stimu-
lation (tES), efforts have been more limited. The generated artifacts 
are highly dependent on the used stimulation technique: transcranial 
Direct Current Stimulation (tDCS) uses a constant current; transcranial 
Alternating Current Stimulation (tACS) uses a sinusoidal oscillating 
currents, and transcranial Random Noise Stimulation (tRNS) uses ran-
domly generated currents. Baxter et al. (2014) worked on isolating 
the low-frequency noise artifacts manifested during tDCS, applying 
Independent Component Analysis (ICA) methods . In the case of tACS, 
notch filter methods can be not used to filter artifacts due to the higher 
complexity of the problem, as discussed by Kohli and Casson (2019). 
The authors propose two different approaches to remove tACS artifacts 
from EEG recordings, based on Superposition of Moving Averages 
and Adaptive Filtering, which is an approach shared by Żebrowska 
et al. (2020). Kohli and Casson (2020) also studied machine learning 
(ML) methods (a Linear Discriminant Analysis classifier) to filter tACS 
artifacts, validating the use of ML based approaches. Haslacher et al. 
(2021) propose also a method to filter artifacts in tACS, Stimulation 
Artifact Source Separation, a signal decomposition algorithm for sep-
arating electric brain activity and stimulation signal artifacts. Barban 
et al. (2021) provide a comparison of four different algorithms (canon-
ical correlation analysis, infomax, fastICA and independent vector anal-
ysis) applied also to tACS. Given the distinct temporal and spectral 
signatures introduced by each stimulation type, artifact removal cannot 
be treated as a modality-agnostic task. Each noise modality presents 
unique signal contamination characteristics, which in turn demand 
tailored processing strategies. This motivates our decision to evaluate 
denoising methods separately for each type of stimulation, and to 
design synthetic artifacts that faithfully reflect the modality-specific 
characteristics observed in physiological recordings. Finally, to sum-
marize the wide field of EEG denoising under noise artifacts, Fig.  1 
provides a comprehensive categorization of the different sources of 
noise, while Fig.  2 provides an overview of the different approaches 
(from traditional methods to neural network-based models).

In this paper, we present an in-depth analysis of eleven methods for 
tES noise artifact removal in simultaneous EEG recordings, including 
a novel State Space Model (SSM) approach proposed by the authors, 
and analyze their performance on three types of stimulation methods 
(tDCS, tACS and tRNS). To our knowledge, this study presents the most 
extensive analysis of tES filtering approach, encompassing all three 
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main types of possible stimulation methods, while existing studies focus 
on one. This study accomplishes two primary objectives: it provides a 
guideline for researchers wanting to filter artifacts from their record-
ings, allowing to select the most efficient methods in each case; and it 
establishes a solid ground-truth for future artifact removal research.

Materials and methods

In order to carry out the evaluation of the different denoising 
methods, synthetic datasets were generated for each of the three types 
of transcranial electrical stimulation (tES) of interest: direct current 
(tDCS), alternating current (tACS), and random current (tRNS). The 
synthetic datasets were created by combining clean EEG data from the 
widely-adopted EEGdenoiseNet benchmarking dataset (Zhang et al., 
2021b) with synthetic artificial noise. The EEGdenoiseNet dataset 
consists of 4514 single-channel expertly-cleaned EEG recordings — 
each 2 s long and sampled at 256 Hz — which were used as ground-truth
for our models.

In this section, we first describe the process of generating the 
synthetic tES artifacts using a 4th-order linear system approximation 
of the voltage. Then, we present the mixing procedure to combine 
the clean EEG data with the synthetic artifacts. Finally, we review the 
different denoising approaches and architectures used in this study.

Synthetic tES artifact generation

In the context of transcranial stimulation, the electrical current — 
whether it is direct, alternating, or random — is applied to the scalp, 
and the resulting electric field penetrates the skull and reaches the 
brain. The electric field generated by the stimulation can be modeled 
as a voltage source, which is then distributed through the brain tissue. 
The voltage distribution can be approximated by a linear system (Hahn 
et al., 2013), which can be represented by the 4th-order system in 
Eq. (1): 

𝑉 (𝑡) = 𝐶1 + 𝐶2𝐼(𝑡) + 𝐶3𝐼̇(𝑡) + 𝐶4 ∫ 𝐼(𝑡) d𝑡 + 𝐶5 ∬ 𝐼(𝑡) d𝑡 d𝑡 (1)

where 𝐶1 = 3.99, 𝐶2 = 3.64, 𝐶3 = 1.395, 𝐶4 = −9.92 ⋅ 10−3, and 
𝐶5 = 3.35 ⋅10−5 respectively. The current 𝐼(𝑡) is the stimulation current, 
and the voltage 𝑉 (𝑡) is the resulting electric field which is then used to 
generate the synthetic noisy EEG artifacts.

The stimulation currents 𝐼(𝑡) are generated as follows:

• tDCS: A constant current 𝐼(𝑡) = 𝐼0 in 𝑚𝐴 is applied for the 
duration of the EEG recording. The voltage is thus approximated 
as follows: 
𝑉 (𝑡) = 𝐶1 + 𝐶2𝐼0 + 𝐶4𝐼0𝑡 +

1
2
𝐶5𝐼0𝑡

2 (2)

• tACS: A sinusoidal current of amplitude 𝐴 and frequency 𝑓 is 
applied for the duration of the EEG recording: 
𝐼(𝑡) = 𝐴 sin (2𝜋𝑓𝑡) (3)

• tRNS: A random current is applied such that the current in-
tensities are normally distributed with 99% of the values lying 
between the peak-to-peak amplitude 𝐴: 
𝐼(𝑡) ∼  (𝜇, 𝜎) (4)

where 𝜇 = 0 and 𝜎 = 𝐴∕3.

Signal mixing procedure

Once generated, the synthetic tES artifacts are mixed with the clean 
EEG data by the following procedure:

1. First, we split the reference 2-second long EEG signals as well as 
the synthetic tES artifacts into three sets: a training set (80%), a 
validation set (10%), and a test set (10%).
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Fig. 2. Overview of Methods for Denoising Electroencephalogram (EEG) Signals. (left) Traditional statistical methods (right) Neural network architectures 
for removing noisy artifacts. Includes our novel State Space Model (SSM)-based approach.
2. Then, within each of the sets, pairs of clean EEG and tES arti-
facts are randomly combined by linearly mixing the sequences 
according to Eq. (5): 
𝜂(𝑠) = 𝑠 + 𝜆 ⋅ 𝑛 (5)

where 𝑠 is the clean EEG signal (ground-truth), 𝜂(𝑠) is the mixed
noisy EEG signal, 𝜆 controls the signal-to-noise ratio (SNR), and 
𝑛 is the synthetic tES artifact signal.

3. The mixing procedure is repeated for each of the three tES 
methods (i.e., tDCS, tACS, and tRNS) at ten uniform SNR levels 
(ranging from −7 dB to 2 dB) according to Eq. (6): 

SNR = 10 log
RMS(𝑠)

RMS(𝜆 ⋅ 𝑛)
(6)

where the Root-Mean Squared (RMS) of a segment 𝑠 is defined 
as: 

RMS(𝑠) =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
𝑠2𝑖 (7)

where 𝑁 is the sequence length of 𝑠.

Learning process

In terms of the learning process of our denoising models, given 
a pair of noisy/clean EEG signals (𝑥, 𝑦), where 𝑥 = 𝜂(𝑦) denotes 
the linearly-mixed noisy EEG, and 𝑦 denotes the original ground-truth
signal. In order to improve the denoising capabilities of the models, we 
normalize the signals according to Eq. (8): 
𝑥̃ = 𝑥

𝜎𝑥
𝑦̃ =

𝑦
𝜎𝑥

(8)

where 𝜎𝑥 is the standard deviation of the noisy EEG signal 𝑥.
Our goal is to train the denoising models to learn a non-linear 

mapping  (⋅) between the contaminated EEG signal 𝑥̃ and the clean 
EEG signal 𝑦̃: 
𝑦̂ =  (𝑥̃;𝜽) (9)

where 𝑦̂ denotes the estimated denoised EEG signal, and 𝜽 denotes the 
learnable parameters of the model.

The learning process is carried out by minimizing the Mean Squared 
Error (MSE) loss between the estimated denoised EEG signal 𝑦̂ and the 
original clean EEG signal 𝑦̃ as in Eq. (10): 

MSE(𝜽) =
1

𝑁
∑

‖

‖

‖

𝑦̂𝑖 − 𝑦̃𝑖
‖

‖

‖

2

2
= 1

𝑁
∑

‖

‖

‖

 (𝑥̃𝑖;𝜽) − 𝑦̃𝑖
‖

‖

‖

2

2
(10)
𝑁 𝑖=1 𝑁 𝑖=1
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Our objective is thus to find the optimal set of parameters 𝜽∗ that 
minimizes the loss function MSE(𝜽) in Eq. (10). 

𝜽∗ = argmin
𝜽

MSE(𝜽) (11)

For this purpose, we used the Adam optimizer (Kingma and Ba, 2014) 
with a learning rate of 𝛼 = 1 ⋅10−4, and trained the models with a batch 
size of 128. To increase the statistical power of our benchmarks, we 
trained, validated and tested independently for 10 times with randomly 
generated signal combinations.

All our models were implemented in Python 3.10 with PyTorch 
2.1, running on a computer with two NVIDIA RTX A6000 GPUs. For 
pre-published models for which open-source code has been released 
publicly, we used their original implementation. Finally, the complete 
workflow followed in this study is summarized in Fig.  3.

Denoising models

In this section, we present the different denoising models used 
in this study. We divide the models into four categories: traditional
shallow denoisers (i.e., models that are not based on neural networks), 
the original EEGdenoiseNet networks from Zhang et al. (2021b) 
(i.e., the most widely used benchmark for EEG denoising), alternative 
denoising models proposed throughout the literature, and finally our 
prosed novel SSM-based networks.

Traditional shallow models: Empirical Mode Decomposition (EMD)
As a baseline for comparing our deeper models, we include in 

this study a traditional shallow method for EEG denoising such as 
the Empirical Mode Decomposition (EMD) with Mutual Information 
from Mert and Akan (2014). The EMD method is a simple signal 
processing technique that decomposes a signal into a finite number 
of intrinsic mode functions (IMFs) (Huang et al., 1998). The IMFs are 
obtained by iteratively extracting the local oscillatory modes of the 
signal as in Algorithm 1. Note that we can then reconstruct the original 
signal by summing the IMFs and the residual as in Eq. (12): 

𝑥(𝑡) =
𝑛
∑

𝑖=1
IMF𝑖(𝑡) + 𝑟(𝑡) (12)

where 𝑥(𝑡) is the original signal, IMF𝑖(𝑡) are the IMFs, 𝑛 is the total 
number of extracted IMFs, and 𝑟(𝑡) is the monotonic residual.

Once the intrinsic components have been extracted, the Mutual 
Information (MI) criterion based on Shannon’s entropy in Eq. (13) is 



M. Fernandez-de-Retana et al. Neuroscience 588 (2025) 152–159 
Fig. 3. Experimental Workflow. The diagram illustrates the complete denoising pipeline used in this study, from data generation to model evaluation.
Algorithm 1 Signal Decomposition into Intrinsic Mode Functions 
(IMFs) (Sifting Process)
1: Input: Signal 𝑥(𝑡)
2: Output: Set of IMFs {IMF1, IMF2,… , IMF𝑛}
3: Initialize the residual 𝑟(𝑡) = 𝑥(𝑡)
4: Set IMF counter 𝑖 = 1
5: while residual 𝑟(𝑡) is not a monotonic function do
6:  ℎ(𝑡) = 𝑟(𝑡)
7:  repeat
8:  Identify all local maxima and minima of ℎ(𝑡)
9:  Interpolate the local maxima and minima to form the upper 
and lower envelopes 𝑒𝑢(𝑡) and 𝑒𝑙(𝑡) respectively

10:  Compute the mean envelope 𝑚(𝑡) = 𝑒𝑢(𝑡)+𝑒𝑙 (𝑡)
2

11:  Update the signal ℎ(𝑡) = ℎ(𝑡) − 𝑚(𝑡)
12:  until ℎ(𝑡) is an IMF according to stopping criteria
13:  Set IMF𝑖 = ℎ(𝑡)
14:  Update the residual 𝑟(𝑡) = 𝑟(𝑡) − IMF𝑖
15:  Increment IMF counter 𝑖 = 𝑖 + 1
16: end while
17: Return {IMF1, IMF2,… , IMF𝑛}

used to select the IMFs that are most informative for the denoising 
process (i.e., which IMFs are noise-free and can be used to reconstruct 
the clean EEG). The whole method is summarized in Algorithm 2.

𝐻(𝑋) = −
∑

𝑥
𝑝(𝑥) log 𝑝(𝑥) (13)

𝐻(𝑋 ∣ 𝑌 ) = −
∑

𝑦
𝑝(𝑦)

∑

𝑥
𝑝(𝑥 ∣ 𝑦) log [𝑝(𝑥 ∣ 𝑦)] (14)

𝐼(𝑋, 𝑌 ) = 𝐻(𝑋) −𝐻(𝑋 ∣ 𝑌 ) (15)

=
∑

𝑥
𝑝(𝑥)

∑

𝑦
𝑝(𝑥 ∣ 𝑦) log

[

𝑝(𝑥 ∣ 𝑦)
𝑝(𝑥)

]

EeGdenoiseNet models
Next, we present the original EEGdenoiseNet models proposed 

by Zhang et al. (2021b). These models are a set of deep learning 
architectures that have shown state-of-the-art performance in EEG de-
noising under ocular and muscular, and have been widely adopted as 
a reference benchmark for EEG denoising tasks. The original EEG-
denoiseNet models consist of four different architectures: (1) a 
Fully-Connected Neural Network (FCNN) with 4 hidden layers, dropout 
regularization, and ReLU activations; (2) a Simple Convolutional Neural 
Network (Simple CNN) with 4 layers of 1D convolutional filters (with 
64 filters each); (3) a Complex Convolutional Network (Complex CNN) 
with 4 layers of 1D convolutional filters (with 64 filters each) and 
residual connections; and (4) a recurrent network using LSTM units 
followed by 3 fully-connected layers with dropout regularization. The 
models were trained using the Adam optimizer with a learning rate of 
1 ⋅ 10−4, and a batch size of 128, as in the original work.

Alternative denoising models
In addition to the aforementioned architectures, we also include in 

our study a set of alternative denoising models proposed throughout 
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Algorithm 2 Empirical Mode Decomposition (EMD) with Mutual 
Information for EEG Denoising
1: Input: Noisy EEG signal 𝑥(𝑡)
2: Output: Denoised EEG signal 𝑦̂(𝑡)
3: Decompose the noisy EEG signal 𝑥(𝑡) into 𝑛 IMFs 

{IMF1, IMF2,… , IMF𝑛} using Algorithm 1
4: Compute the Autocorrelation Function (ACF) for the original signal 

𝜌𝑘(𝑥) and the IMFs 𝜌𝑘(IMF𝑖)
5: For every IMF, compute the Mutual Information (MI) between its 
ACF and the ACF of the original signal 𝐼𝑖 = 𝐼(𝜌𝑘(IMF𝑖), 𝜌𝑘(𝑥)) as in 
Eq. (13)

6: Normalize the MI values 𝐼𝑖 = 𝐼𝑖
max(𝐼𝑖)

7: if 𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛 > 0.8 then
8:  The signal does not contain additive noise
9: end if
10: Determine the threshold 𝜏 = 1

2 (𝐼3 − 𝐼1) + 𝐼1
11: Reconstruct the denoised EEG signal 𝑦̂(𝑡) as 𝑦̂(𝑡) = ∑

𝑗 IMF𝑗 , 𝑗 = {𝑖 ∣
𝐼𝑖 > 𝜏}

12: Return 𝑦̂(𝑡)

the literature. These models include a Novel CNN originally proposed 
in Zhang et al. (2021a) for removing muscular artifacts by using 
an exponentially increasing number of 1D filters in each layer, a 
Transformer-based network (EEGDnet) proposed by Pu et al. (2022), 
and a multi-modular convolutional network (MMNN-4) proposed by
Zhang et al. (2022) which not only estimates the clean EEG but also 
outputs the estimated noise. Finally, we also include the Wavelet-
CNN network which provides a computationally efficient alternative 
as it relies only on two single Conv1D layers and a pair of fully-
connected layers. Instead of passing the clean EEG signal through the 
network, the Wavelet-CNN network first extracts the Wavelet decompo-
sition (Sharma et al., 2017; Borse, 2015; Yu, 2009) of the signal, and 
then feeds the transformed signal to the network for denoising. The 
architecture of the Wavelet-CNN network is shown in Fig.  4.

SSM-based networks
Finally, we test the performance of our proposed novel SSM-based 

networks: that is, a vanilla implementation of the Mamba architec-
ture (Gu and Dao, 2023), and the more complex Multi-Modular Macro 
Mamba (M4) architecture in Fig.  5. Theoretically, SSM-based networks 
leverage the limitations of traditional deep sequential models by es-
sentially providing parallelizable training (in the style of CNNs and 
Transformers) while also delivering constant inference complexity (as 
in RNNs) (Gu et al., 2021; Gu, 2023). That is, they can be written as a 
convolution (16): 
𝑲̄ =

(

𝑪𝑩̄,𝑪𝑨̄𝑩̄,… ,𝑪𝑨̄𝑘𝑩̄
)

𝑦 = 𝑥 ∗ 𝑲̄
(16)

or as a recurrence (17): 
ℎ𝑡 = 𝑨̄ℎ𝑡−1 + 𝑩̄𝑥𝑡 (17)

𝑦𝑡 = 𝑪ℎ𝑡
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Fig. 4. Architecture of the Wavelet-CNN Network. The model uses the wavelet decomposition of artifact-contaminated EEG as input features. Here, 𝑊  represents 
the dimension of the concatenated wavelet coefficients of 𝑥. Following two Conv1D layers, the signal is mapped back to its original sequence length 𝑁 through 
the fully-connected layers. The output of the network is the denoised EEG signal.
Fig. 5. Architecture of Multi-Modular Macro Mamba (M4). The artifact-contaminated EEG is first processed by an MS-CDM block with 6 CDMs, each containing 
32 filters in their Conv1D layers. Next, 8 Mamba blocks are stacked sequentially. The output from the last Mamba block is then normalized and fed into another 
MS-CDM block with 2 CDMs, each having 16 filters in their Conv1D layers.
Likewise, selective SSMs, such as the Mamba blocks used in our models, 
allow the network to focus on the most relevant information for the 
denoising task, and to ignore the irrelevant information by employing 
input-dependent parameters (Gu and Dao, 2023). As a consequence of 
this, the convolutional model of computation is no longer valid, and 
thus scanning — a hardware efficient recurrence operation — is used.

However, more recently, some authors have argued that in practice 
SSMs pose a number of limitations. For instance, Dao and Gu (2024) 
acknowledges that although SSMs are theoretically appealing for their 
computational complexities, they are not as efficient in practice. In 
particular, the authors argue that the hyper-optimization of modern 
accelerators such as GPUs and TPUs can be exploited and thus propose 
a new matrix form of computing SSMs based on structured matrices: 
i.e., matrices that can be represented in a compact (subquadratic) rep-
resentation, and that have fast algorithms for matrix–vector operations 
by operating directly on these compressed representations.

𝑦 = 𝑴𝑥 (18)

𝑴 = 𝑳◦𝑪𝑩̄𝑇 (19)

𝑴 𝑖𝑗 = 𝑪𝑇
𝑖 𝑨̄𝑖 … 𝑨̄𝑗+1𝑩̄𝑗 (20)

where 𝑴 is the sequence transformation matrix, 𝑳 is the structured 
mask matrix, and ◦ denotes the Hadamard product (i.e., element-wise 
multiplication).

Furthermore, Merrill et al. (2024) also explores the relationship 
between the expressive power of SSMs and Transformers, and Dao and 
Gu (2024) shows how the structured matrix 𝑳 can be used to define 
different types of attention.

Results

In this section, we first present the metrics used to assess the quality 
of the denoising models on the EEGdenoiseNet dataset. Then, we 
provide a short discussion on the choice of hyperparameters used in 
the training process. Finally, we present the results of the denoising 
models on the synthetic datasets generated for each of the three tES 
methods (tDCS, tACS, and tRNS).

Evaluation metrics

In order to evaluate the performance of the different models we use 
the same regression metrics as in the original benchmarking dataset
(Zhang et al., 2021b). These metrics have become a staple of the EEG 
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denoising literature, and are widely used to compare the performance 
of different models. The metrics used are the Root Relative Mean 
Squared Error (RRMSE) for both the temporal and spectral domains 
(Eqs. (21) and (22) respectively), and the Correlation Coefficient (CC) 
in Eq. (23) between the estimated and the ground-truth EEG signals:

RRMSE𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 =
RMS(𝑦̂ − 𝑦)
RMS(𝑦)

(21)

RRMSE𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 =
RMS(PSD(𝑦̂) − PSD(𝑦))

RMS(PSD(𝑦))
(22)

CC =
Cov(𝑦̂, 𝑦)

√

Var(𝑦̂) Var(𝑦)
(23)

where 𝑦̂ is the estimated EEG signal, 𝑦 is the ground-truth EEG signal, 
RMS(⋅) denotes the Root-Mean Squared error as in Eq. (7), PSD(⋅)
denotes the Power Spectral Density, Cov(⋅) denotes the covariance, and 
Var(⋅) denotes the variance.

In practice, smaller values of the RRMSEs, and values of the CC 
closed to 1, are preferred as indicating a better match between the 
estimated and the ground-truth EEG signals.

Hyperparameter configuration

For the hyperparameter configurations of the evaluated models, 
we adhered to the optimizer, batch-size, number of epochs, and other 
hyperparameters (e.g., the number of convolutional filters and their 
kernel size) as specified in their respective publications.

In training the Mamba-based networks, both vanilla and Multi-
Modular variant, we employed early stopping regularization with a 
patience of 5 epochs, a batch-size of 128, and the Adam optimizer. The 
learning rate, 𝛼 = 10−4, was chosen based on a sweep over learning 
rates ranging from 10−1 to 10−6. The 𝜷 coefficients were set to the de-
fault values of 𝛽1 = 0.9 and 𝛽2 = 0.999. Likewise, for the Mamba blocks, 
we set the inner dimension (the latent internal space dimension) to 
match the sequence length. Practically, this means 𝑁 = 𝐸 = 512, given 
that our signals are 2 s long with a sampling rate of 256 Hz. Finally, 
to enhance the statistical robustness of our benchmarks, we performed 
training, validation, and testing independently 10 times with randomly 
generated signal combinations. Random weight initialization followed 
PyTorch’s default seed mechanism for each model class. No fixed seed 
was enforced; instead, 10 distinct random seeds were implicitly used 
for each run, to support robust estimates across trials.
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Experimental results

Table  2 shows the performance of the proposed denoising models 
in the context of artifact removal from EEG signals under transcranial 
stimulation. Specifically, the Relative Root Mean Square Error (RRM-
SEs) — in both temporal and spectral domains —, and the correlation 
coefficient (CC) between the ground-truths and the denoised signals are 
presented for alternating, direct, and random current stimulations.

To determine the statistical significance of these results, we per-
formed a series of pairwise comparisons. For each stimulation modality 
and metric, every model was compared against the designated best-
performing model (in bold in Table  2), serving as our control group. 
The comparisons were conducted using Welch’s 𝑡-test on the summary 
statistics (mean, standard deviation) gathered from the 10 independent 
runs. To account for multiple comparisons, the Bonferroni correction 
was applied. A result was deemed not significantly different if the 
corrected 𝑝-value exceeded our significance threshold of 𝛼 = 0.05.

In the case of tDCS, the Empirical Mode Decomposition (EMD) 
method, a traditional shallow denoiser based on Mutual Information, 
yielded an RRMSE of 0.313 in the temporal domain and 0.138 in the 
spectral domain, with a CC of 0.952. In comparison, the Original EEG-
denoiseNet Networks demonstrated superior performance, with the 
Fully Connected Neural Network (FCNN) achieving an RRMSE of 0.131 
(temporal) and 0.075 (spectral), and a CC of 0.993. Notably, the Simple 
CNN and Complex CNN models further reduced these errors, with the 
Complex CNN achieving the lowest RRMSE of 0.021 (temporal) and 
0.010 (spectral), and a perfect CC score of 1. Alternative models such 
as the Multi-Modal Neural Network-4 (MMNN-4) also performed well, 
with an RRMSE of 0.066 (temporal) and 0.029 (spectral), and a CC of 
0.999. The Novel SSM-Based Networks, particularly the vanilla Mamba 
implementation, achieved an RRMSE of 0.042 (temporal) and 0.023 
(spectral), with a CC of 1.

Regarding tRNS, the EMD method recorded the highest RRMSE 
values of 0.648 (temporal) and 0.485 (spectral), and a CC of 0.831. 
Among the EEGdenoiseNet models, the FCNN achieved an RRMSE 
of 0.405 (temporal) and 0.317 (spectral), and a CC of 0.904; while 
the Complex CNN model showed improvements with an RRMSE of 
0.514 (temporal) and 0.420 (spectral), and a CC of 0.864. The best 
performance in this category was observed with the LSTM, which 
scored a 0.405 (temporal) and 0.306 (spectral) for the RRMSEs, and 
a CC of 0.903. Additionally, we highlight the performance of the 
Wavelet-CNN which outperforms both CNN implementations from the 
original EEGdenoiseNet framework and outperform the NovelCNN in 
the spectral domain at a fractional computational cost. At last, the 
M4 model achieved the lowest RRMSE values of 0.340 (temporal) and 
0.289 (spectral), and the highest CC of 0.927.

Finally, when removing tACS artifacts, the EMD method exhibited 
an RRMSE of 0.635 (temporal) and 0.545 (spectral), and a CC of 0.816. 
The EEGdenoiseNet networks once again demonstrated significant 
enhancements, with the FCNN achieving an RRMSE of 0.211 (temporal) 
and 0.124 (spectral), and a CC of 0.975. The Simple CNN and Complex 
CNN models further optimized these metrics, with the Complex CNN 
achieving an RRMSE of 0.179 (temporal) and 0.106 (spectral), and a 
CC of 0.979. The M4 model consistently delivered the best results, with 
an RRMSE of 0.163 (temporal) and 0.127 (spectral), and a CC of 0.989.

Overall, the Complex CNN model demonstrated the best perfor-
mance for tDCS, yielding the lowest RRMSEs and a perfect CC of 1.0. 
Likewise, for tACS and tRNS artifacts, the Multi-Modular Macro Mamba 
model consistently outperformed other methods, providing the best 
combination of low RRMSEs and high CC. Finally, we highlight the 
remarkable robustness of the Wavelet-CNN model in both the spectral 
and temporal domains due to its use of wavelet components of the 
signal as input to the convolutional layers. Likewise, its paralleliz-
ability and computational efficiency (i.e., similar results to the other 
CNN models with a fraction of the weights) might prove of utmost 
importance in situations such as in-device denoising or computational 
resource scarcity. A succinct summary of the results is provided in Table 
1.
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Table 1
Summary of Top-Performing Denoising Models for Each tES Modality. Arrows 
indicate whether lower (↓) or higher (↑) values are better.
 Stimulation Best Model RRMSE (T|S) ↓ CC ↑  
 tDCS Complex CNN 0.021 | 0.010 1.000 
 tACS M4 0.163 | 0.127 0.989 
 tRNS M4 0.340 | 0.289 0.927 

Discussion

In this study, we have presented a comprehensive evaluation of the 
performance of different deep learning-based denoising models in the 
context of artifact removal from EEG signals under transcranial stimula-
tion. We have compared the performance of traditional shallow denois-
ers — such as the Empirical Mode Decomposition (EMD) method using 
entropy as an information criterion for selecting the most informative 
Intrinsic Mode Functions (IMFs) —, the original EEGdenoiseNet net-
works, alternative denoising models proposed throughout the literature 
— including an alternative CNN, a Transformer-based network, a multi-
modular convolutional network, and an efficient CNN using wavelets 
as input features —, and novel SSM-based networks (both a vanilla
Mamba block and the more complex Multi-Modular Macro Mamba 
(M4) architecture).

Our results show that, in the presence of constant current stim-
ulation (tDCS), the Complex CNN model from the original EEGde-
noiseNet framework delivered the best performance metrics, provid-
ing the best combination of low RRMSEs and highest CC. However, our 
statistical analysis demonstrates that it is not a standalone winner; the 
Simple CNN and the original Mamba model performed at a statistically 
indistinguishable level (𝑝 > 0.05) suggesting that researchers can select 
from a tier of top-performing models for tDCS based on secondary 
criteria, such as computational complexity or implementation ease.

Conversely, for the more complex, non-stationary artifacts gener-
ated by alternating (tACS) and random current stimulation (tRNS), 
our proposed Multi-Modular Macro Mamba (M4) architecture was the 
definitive top performer, with the lowest RRMSE values (in both the 
temporal and spectral domains) and the highest CC. The statistical 
analysis confirmed the M4 model’s superiority, particularly for tRNS. It 
is particularly noteworthy that the simpler, non-modular vanilla Mamba 
implementation was also highly effective. For tACS artifact removal, its 
performance was statistically indistinguishable from the more complex 
M4 architecture, emphasizing the denoising strength of the underlying 
SSM approach. Finally, we highlight the remarkable robustness of the 
Wavelet-CNN model in both the spectral and temporal domains due to 
its use of wavelet components of the signal as input to the convolutional 
layers.

In more practical terms, the high performance of the M4 archi-
tecture in removing complex, non-stationary artifacts generated by 
tACS and tRNS provides a robust methodology to investigate neural 
dynamics in neuroimaging applications where analysis was previously 
confounded by such noise. Likewise, from a computational standpoint, 
the architecture’s foundation on State Space Models lends itself to effi-
cient, parallelizable training, and optimal constant inference; whereas 
the Wavelet-CNN positions itself as a light-weight, efficient alterna-
tive for real-time resource-constrained applications, such as on-device
denoising.

Furthermore, we must consider the semi-synthetic nature of our 
data. Our methodology, which superimposes modeled tES artifacts onto 
real-world, expertly-cleaned EEG signals, is essential for establishing a 
reproducible benchmark with a definitive ground-truth. Nevertheless, 
we acknowledge that performance on these datasets, while providing 
a rigorous and controlled comparison, may not be wholly represen-
tative of performance in live clinical settings, which might present 
additional complexities such as dynamic electrode impedance or other 
instrumental artifacts.
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Table 2
Average EEG Denoising Performance of all SNRs under tACS, tRNS, & tDCS Stimulation. Values are presented as mean ± standard error. For each stimulation type, 
the best-performing model is shown in bold and served as the control for statistical tests. Values marked with ** are not significantly different (Bonferroni-corrected 
𝑝 > 0.05) from the control model in that column, based on a pairwise Welch’s 𝑡-test.
 tDCS tRNS tACS

 RRMSE-Temporal RRMSE-Spectral CC RRMSE-Temporal RRMSE-Spectral CC RRMSE-Temporal RRMSE-Spectral CC  
 Traditional Shallow Denoiser
 EMD 0.313±0.001 0.138±0.001 0.952±0.000 0.648±0.005 0.485±0.006 0.831±0.002 0.635±0.005 0.545±0.013 0.816±0.002  
 Original EEGdenoiseNet Networks
 FCNN 0.131±0.001 0.075±0.004 0.993±0.000 0.405±0.005 0.317±0.008 0.904±0.001 0.211±0.002 0.124**±0.001 0.975±0.001   Simple CNN 0.021**±0.001 0.017**±0.003 1.000**±0.000 0.600±0.011 0.481±0.007 0.840±0.009 0.189±0.003 0.112±0.001 0.976±0.001   Complex CNN 0.021±0.000 0.010±0.001 1.000±0.000 0.514±0.009 0.420±0.006 0.864±0.004 0.179**±0.005 0.106±0.003 0.979±0.001   LSTM 0.199±0.019 0.072±0.016 0.981±0.003 0.405±0.006 0.306**±0.008 0.903±0.005 0.210±0.007 0.101±0.007 0.976±0.004  
 Alternative Denoising Models
 Novel CNN 0.195±0.007 0.155±0.008 0.973±0.002 0.357±0.004 0.405±0.007 0.929**±0.001 0.238±0.005 0.214±0.003 0.964±0.001   Transformer (EEGDnet) 0.411±0.012 0.335±0.007 0.914±0.004 0.520±0.004 0.408±0.001 0.854±0.002 0.298±0.008 0.179±0.005 0.956±0.003   MMNN-4 0.066±0.003 0.029±0.003 0.999±0.000 0.414±0.002 0.308±0.001 0.899±0.001 0.181±0.001 0.106±0.000 0.981±0.000   Wavelet-CNN 0.101±0.007 0.035±0.001 0.996±0.001 0.462±0.001 0.342±0.000 0.884±0.000 0.201±0.004 0.110±0.001 0.977±0.001  
 Novel SSM-Based Networks
 Mamba (Original) 0.042±0.004 0.023±0.002 1.000**±0.000 0.452±0.018 0.735±0.066 0.925**±0.004 0.178±0.003 0.132**±0.008 0.983**±0.002   Multi-Modular Macro Mamba (M4) 0.120±0.002 0.067±0.001 0.992±0.001 0.340±0.000 0.289±0.001 0.927±0.001 0.163±0.001 0.127±0.000 0.989±0.000 
Future Work: Despite research in ML-based EEG denoising getting 
a great deal of attention lately, several avenues remain unexplored. We 
discuss below some promising challenges in the field which could yield 
interesting improvements and open new research paths in psychology 
and neuroimaging under brain stimulation.

In the first place, a notable limitation in the existing body of 
work is inherited from the original extensively benchmarked EEG-
denoiseNet dataset: EEG recordings are single-channel and often 
restricted to segments no longer than 2 s. Although most of the meth-
ods explored in this study are already compatible with multi-channel
signals and longer sequence lengths, the lack of a foundational refer-
ence dataset for evaluating artifact removal in more realistic settings 
severely limits the practicality of these methods in real-world stud-
ies on neural dynamics. In this regard, while our study establishes 
strong single-channel benchmarks, future work must focus on adapt-
ing and validating these architectures on datasets that are not only 
multi-channel and of longer duration, but also comprised of a di-
verse participant population. The ability to process multiple channels 
simultaneously is critical for capturing the spatial dynamics of neu-
ral activity, which is of paramount importance for robust clinical 
applications and advanced Brain–Computer Interfaces.

Secondly, the demonstrated success of our proposed models on com-
plex, non-stationary stimulation artifacts suggests their potential for 
broader applications. Future research could explore the generalizability 
of these advanced SSM-based architectures to other challenging types 
of EEG noise, such as muscular (EMG), ocular (EOG), or other kinds 
of artifacts. Investigating the transferability of these models might sig-
nificantly advance the development of an integrated cross-perturbatory 
EEG denoising tool.

Likewise, another critical aspect of how EEG denoising is usually 
approached is the robustness of the current evaluation metrics used 
to assess artifact removal (i.e., CC and RRMSEs). These metrics assess 
separately the performance in the temporal and spectral domains, and 
the correlation between the two signals. For that reason, future studies 
should investigate and develop more comprehensive evaluation frame-
works the hopefully assess and combine the consistency and fidelity 
of the denoised signals across the different domains. Moreover, studies 
such as Liu et al. (2023) propose to leverage both temporal and spectral 
information by extracting network features from both domains.

Additionally, while these metrics are essential for benchmarking 
against existing literature, they may not fully capture the preservation 
of subtle but physiologically crucial features of the EEG signal. Future 
studies should therefore incorporate more functionally relevant metrics 
to ensure that denoising algorithms do not inadvertently distort under-
lying neural dynamics. These could include the preservation of power 
within specific spectral bands (e.g., alpha, beta), the conservation of 
phase synchrony between channels (in multi-channel extensions of this 
work), or the integrity of event-related potential (ERP) waveforms. 
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Assessing performance on these dimensions is paramount for validating 
the use of these algorithms in clinical neuroscience research where the 
fidelity of the neural signal is the primary outcome of interest.

Furthermore, the application of state-of-the-art foundational time-
series methods based on Transformers presents another promising 
direction for future research. Models such as Google’s decoder-only
TimesFM (Das et al., 2023), Amazon’s encoder–decoder CHRONOS
(Ansari et al., 2024), or Salesforce’s masked encoder-only MOIRAI
(Woo et al., 2024) among many others have demonstrated impressive 
results in forecasting tasks by handling complex temporal dependencies 
and could potentially bring significant improvements in EEG denoising.

Finally, the exploration of diffusion models for EEG denoising repre-
sents an exciting frontier. Diffusion models, which have shown success 
in various signal processing tasks, could offer novel ways to approach 
the denoising problem (Yang et al., 2024; Meijer and Chen, 2024). 
These models work by iteratively refining noisy signals through a 
learned diffusion process, progressively enhancing the signal qual-
ity. Applying diffusion models to EEG data could provide a robust 
framework for mitigating noise while preserving critical neurodynamic 
information.
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